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The problem of finding the transvsrsal contour of a conical body of given length and base 
area so as to minimize the total drag in hypersonic flow is considered nnder the assnmp 
tions that the pressure distribntion is modified Newtonisn aud the surface-averaged skin- 
friction coefficient is constant. Both the case of a slender body and that of a nonmlender 
body are investigated, and a simple proof of the propsrtiee of the extremal arc is supplied 
by solving first the local problem and then the integral problem. Specifically, the transver- 
sal contour locally minimizing the drag per unit base area is shown to be identica1 with the 
extremal contour. Depending ou the length, the base area, and the skin-friction coefficient 
three sohtions are possible: (1) a corn 
ments tangent to a basic circle, and (3 P 

lete circle, (2) a combination of straight line seg- 
a combination of circular arcs and straight line seg- 

ments tangent to the circular arcs. For all of these solutions, the base area per unit peri- 
meter and the aerodynamic drag per unit base area are conetsnt along the extremal arc. 

The problem of the optimum transversal contour of a body at hypersonic speeds has re- 
ceived considerable attention in recent years. After the pioneering work of Chcmyi and 
Gonor on the minimization of the pre sure drag [z] the miaimi ation of the tots1 dra has 
been considered by Miele and Saaris(t31, Bellman t& Reyn [3f and Miele and Hull El. 

In this paper, the minimization of the total drag of a hypersonic body of given length and 
base area is discussed once more, and a simple proof of the properties of the extremal arc 
is sopplied by solving first the local problem and the the integral problem. Specifically, 
for both slender and nonslender bodies, it is shown that the transversal contour locally min- 
imizing the drag per unit base srea is identical with the extremal contour. 

The following hypotheses are employed: (a) a plane of symmetry exists between the left- 
t-hand sides of the body; (b).the base plane is perpendicular to the plane of 
the free-stream velocity is contained in the plane of symmetry and is perpen- 

dicular to the base plane; (d) the pressure coefficient is proportional to the cosine spared 
of the angle formed by the free-stream velocity and the normal to each surface elemdnl; (e) 
the base drag is neglected; If, the skin-friction drag is proportional to the wetted area; and 
(g) the longitudinal contour is conical. 

1. Formalation of the problem. We denote by D the drag, q the fres-stream dyn- 
amic pressure, n a factor modifying the Newtonian pressare distribution, C, the snrface- 
averaged skin-friction coefficient (assumed constant), t the length, and S the base area, 
while 8 and R are the polar coordinates of any point of the base. We introduce the constant 

f = (Cf I 472.)“; 

and define the dimensionless base radius, the drag parameter, and the area parameter as 
follows 

*) This research is a condensed version of the investigation described in paper Elf 
**I Lecture presented at the Steklov Mathematical Institute of the USSR Academy of Scien- 

ces, Moscow, USSR on September 12, 1966. 



Approach to the problem of the optbnm tWlSV4ts8l contour 575 

P = R / lft y=Di2nqPr, X=S/Pr 

Nsxt, in the light of hypotheses (al to fgl , we recognize that the problem o minimizing 
the drag for a given figth and base srea consists of extrcunizing the integral 3 to 61 t 

3 

I[ 
0 

J = n tp* + p.:+ “pp*) + 2 (P' + PV do I (1.1) 

where p’= dp/d@ nnd where m = 0 for a slender body and m = I for a nonslender body. The 
admiesiblt functions p(8) must satisfy the isoperimetric constraint 

z 

K= P2d0 
s (I.21 
0 

where K is a prescribed constant. The terminal radii p (0) and P(R) are free and must be 
found from the solution of the variational problem. 

2. L a c a 1 so 1 at i o n. Prior to solving the above intagral problem, we study a related 
local problem. For any arbitrarily prsscribed contour p (8 1, we define the function4 

R t) 

K 
6 

J (6) = tp2 ,_ p.z”.+ mf”p4) + 2 fP2 A P.2)“’ 1 d3, K(6) = ‘p2d0 
I 

(2.1) 
0 0 

which are such that 
J (0) = 0, x (0) = 0; J (n) = J, K (3%) = x 

Next, we introduce the derivatives 1. = dl/d@ and I( = dK/de and observe that, bacauss 
of Eqs. (2.1) 

dJ 
x = Pa + P.:; mfp’ + 2 (P” + P’+, g = P2 

As a consequence, the aerodynamic drag per nuit base area is proportional to 

dJ P’ 
z = pa + f3.a + WV + 2 (p2 -t p.+ 

and can be rewritten as 

d$ = A(U), 
3 2 2 

A fu) = (1 + ~~~2~2) +-G- ’ @ = (p2 ; p-2fh (2.2) 

The variable s is proportional to the enclosed area per unit perimeter snd has ths proper- 
ty that 

U<P 

Since the aerodynamic drag per unit enclosed area (2.21 depends on u only, we formalste 
the following problem: For each given radius 

Q 
, find the parsmeter u which locally minimizes 

the aerodynamic drag per unit sncloeed ares 2.2). Of course, the admissible values of I( ars 
subordinated to the inequality constraint (2.3). The above problem belongs to the ordinary 
theory of maxima and minima and admits the solutions 

U=P @<so) or u=uo (P>,Uo) (2.41 
where so is the value of s for which 

dAIdu =O ?nf%&2 - woa~* + 1 = 0 (2.5) 
Since the order of maguituds of the:onstant f is 10-t. Eq. (2.5) csn be solved by a line- 

arization procedure in the neighborhood of uo = 1 to yield the approximate solution 

so z 1 + (V3) mf2 (2.6) 
For a slendz1 body (m = 01, Eq. (2.6) reduces to u o = 1, an exact solution of Eq. (2.5) 

For a nonslander body 6n = 11, the value of uo differs from that of a slender body by less 
than 1%. 

3. Integrated properties. Now, assume that a body is constructed in such a way 
that the local optimum conditions (2.4) are satisfied everywhere. The following questions 
arise. What is the geometry of the body? What is its aerodynamic drag? 

Solutions of c&ass 1. These solutions are governed by the relationship (2.41, which can 
be rewritten as 
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p’ = 0 (3.1) 
Upon integrating and accounting for the constraint of given base area, we see that 

p = comt = m 
This is a complete circle characterized by the drag parameter 

J = KZ i (n f mK,P) + 2 m K < rtu,* 
Sotstiosa of aloar 2. These solutions are governed by the relationship (2.4), which can 

be rewritten as 

pr + p.2 = p’ / UC2 or (p / no)2 + (p’ / u&2 = (p / uo)4 (3.2) 

Upon integrating, we obtain the relationship p co& - const) = uo; which is a straight 
line segment tangent to the basic circle of radius p = no. By combining several such seg- 
ments, a closed body having the drag parameter 

J = (2~0 + I’&) K, K 2 nu,2 (3.3) 

can be generated. 

Sobdoss of &ua 3. These sohttions are obtained by combining subarcs governed by 
Eq. (3.1) and subarea governed by Eq. (3.2). Because of the continuity requirement, the 
sobarcs (3.1) are characterized by the radius p = ho. Hence, these solutions consist of arcs 
of the basic circle p = u. and straight line segments taugent to these arcs. Once more, the 
drag parameter is represented by Eq. (3.3). 

4. Variational solation. We now consider the problem of minimizing the integral 
0.1) subject to the constraint (1.2). This isoperfmetric problem with variable end points is 
equivalent to that of minfmisiug the integral 

11 

J’ = I-?uhK== $ F(p, p, h)de 
” 

in which the fandamental function F is defined as 

F = ps Id (u) - hl (4.1) 

Here, h is sn undetetminad, constant Lagrange multiplier, A (II) and II (p, p’) are defined 

by Eqs. (2.2). 
Standard variational teohniqnes show that the extremal arc must satisfy the following 

first integral of the Euler equation: 

%--p’F,. =C (4.2) 

and the natnral boundary conditions 

F,. =0 (4.3) 

at the initial and final points. In the event that discontinnities in the derivative p’ occur, 
the comer conditions 

A (P - p’~,.) = 0, AF,. = 0 (4.4) 

must be satisfied at the junction of any pair of subarcs composing the extremal arc. 
h the above relations, the derivative 

F,. = p2 (d-4 / da) (au ,’ 8~‘) 

as can be seen by employing Eqs. (2.2) and (4.1). 
While a straightforward mathematical solution of this variational problem cannot be ob- 

tained (see, for instance, (33, th e a b sence of any preferential direction in the transversal 
plane has prompted this writer to think that the local solution represented by Eqs. (2.4) is 
identical with the variational solution. That this is the case can be seen from the following 
reasoning. Since dn/ap’ vanishes along the solution (2.4) and dA/du vanishes, along the 
eohrtion (2.4). the local solution has the property that 

everywhere. Bence, it satisfies the natural boundary conditions (4.3) and the corner condi- 
tion (4.4). After the first integral (4.2) and the comer condition (4.4) sre rewritten in the 
form 

F = c, AF = 0 (4.5) 
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the following question arises. For each given isoperimetric constant K, is it possible to 
find a pair of constants X and C for which the first condition (4.5) becomes an identity? 

This is nrecisely the case if one chooses 

h = (fj”’ + 
K (2n + nzKf*) 

(n + ,,&ri)2 ’ 
. for the solutions of class 1 and 

h=2/uo+I/uo. CfO 

for the solutions of class 2 and class 3. 
For the latter solutions, the corner condition (4.61 is satisfied providing every subarc 

composing the extreme1 arc is characterized by the integration constant C = 0. 

Fig. 1 Fig. 2 

Fig. 3 Fig. 4 

In the previous sec- 
tions, the minimisation 
of the total drag of a con- 
ical body of given length 
and base area is discus- 
sed under the assump 
tions that the pressure 
distribution is modified 
Newtonian and the snlc 
face-averaged skin-frfc- 
‘tion coefficient is con- 
stant. Both the case of a 
slender body and that of 
a nonslender body are in- 
vestigated, and a simple 
proof of the propertie of 
the extreme1 arc is eutpp 
lied by solving first a 

local problem and then the integral problem. Specifically, the transversal contour locally 
minimixing the drag per unit base area is shown to be identical with the extremal contour. 
Depending on the length, the base area, and the skin-friction coefficient (that is, depending 
on the area parameter Kl, three solutions are possible: (1) a complete circle; (2) a combinr 
tion of straight line segments tangent to a basic circle (see Figs. 1 and 21; and (31 a com- 
bination of circular arcs (having the same radius and straight line segments tangent to the 
circular arcs (see Figs. 3 and 41. Each solution is characterized by the constancy of the 
base area per unit perimeter. An analogous remark holds for the aerodynamic drag per unit 
base area or unit perimeter. These invariant properties are due to the physics of the prob- 
lem, that is, the absence of a preferential direction in the transversal plane. 
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